您的当前位置:现场报码室 > 现场开奖报码室 >

如何实现BGA封装基板与PCB各层的电气连接本港开

更新时间:2020-01-24

  互连区域的信号完整性问题越来越突出。针对高速BGA封装与PCB差分互连结构进行设计与优化,着重分析封装与PCB互连区域差分残桩这四个方面对高速差分信号传输性能和串扰的具体影响。利用全波电磁场仿线D仿真模型,最后时频域仿真验证了所述的优化方法能够有效改善高速差分信号传输性能,减小信号间串扰,实现更好的信号隔离。

  近年来,www.666607.com异化之地恐惧力量怎么用 恐惧力量使。球栅阵列(BGA)封装因体积小,引脚多,信号完整性和散热性能佳等优点而成为高速IC广泛采用的封装类型。为了适应高速信号传输,芯片多采用差分信号传输方式。随着芯片I/O引脚数量越来越多,BGA焊点间距越来越小,由焊点、过孔以及印制线构成的差分互连结构所产生的寄生效应将导致衰减、串扰等一系列信号完整性问题,这对高速互连设计提出了严峻挑战。目前国内外学者对于板级信号完整性问题的研究仍多集中于水平传输线或者单个过孔的建模与仿线 GHz以内。对于包括过孔、传输线的差分互连结构的传输性能以及耦合问题研究较少。并没有多少技术去减少封装与PCB互连区域垂直过孔间的串扰。

  本文针对高速BGA封装与PCB差分互连结构进行设计与优化。着重分析改进差分布线方式,信号布局方式,信号孔/地孔比,布线层与背钻这四个方面对改善高速差分信号传输性能和串扰的具体影响。利用全波电磁场仿真软件CST微波工作室建立3D仿真模型。仿线GHz,在时域和频域同时验证了所述优化方法的有效性。

  在高速信号传输中,差分信号因具有减小轨道塌陷和电磁干扰、提高增益、消除共模噪声和开关噪声干扰等优点而被广泛使用。高速差分信号通过IC封装到达PCB板各层进行传播,为了实现BGA封装基板与PCB各层的电气连接,由水平差分线和垂直差分过孔共同构成了差分互连结构,如图1所示。

  本文采用的仿真环境为全波电磁场仿真软件CST微波工作室,集时频域算法为一体,含多个全波及高频算法,可仿真任意结构、任意材料下的S 参数,并可以与电路设计软件联合仿真。几种优化方案均由CST微波工作室建立三维物理模型,PCB 的层叠结构如图2 所示,PCB板共12层,第1,3,5,8,10,12层为信号层(走线 层为电源或地层。板厚为97.6 mil,板材介电常数3.8,损耗正切0.012。0.8 mm间距BGA扇出过孔间距为31.4 mil,过孔孔径8 mil,线 mil,差分走线 PCB板层叠结构剖面图

  差分信号从过孔引出时,不同的布线方式会对差分信号的传输特性有很大的影响,如果传输线不能等长等距,就会引起信号失线所示,信号从过孔引出时分别采取三种布线°转角,每对差分过孔周围有两个隔离地孔。布线 三种差分线是以上三种不同布线方式的插入损耗。显然,第一种水平对称的方式传输性能最好。差分信号最重要的就是等长等距,等长的目的是要确保时序的准确与对称性,两条传输线上的任何时延差或错位,都会导致差分信号失真,并使部分差分信号变成共模信号,产生电磁干扰。等距的目的是保持差分阻抗的一致性。45°和90°转角在布线时都无法做到绝对的等长等距,产生相位差和共模噪声。

  图5和图6分别从频域和时域展示了三种布线方式所产生的共模噪声。不论是45°转角还是90°转角,产生的共模噪声都比0°高得多,而45°转角布线 不同布线方式下共模噪声频域比较

  根据经验法则,为了把错位维持在信号上升边10%以内,要求两线长度匹配至上升边空间延伸的10%以内。这种情况下,对走线总长度的匹配要求如下:

  式中:ΔL 表示为错位维持在上升边的10%以内,两条走线之间的最大长度偏差;RT表示信号的上升边;v 表示差分信号的传播速度。如果信号的传播速度大致为6 in/ns,上升边为100 ps,那么两条走线的长度应匹配至其偏差小于60 mil。由于高速信号上升时间越来越短,留给缘于走线长度偏差的错位预算在不断变小,使得走线长度之间的匹配显得愈加重要。

  BGA封装管脚在扇出时通过过孔连接至PCB板其他各层,几十对差分对同时高密度、长线并行,相邻的传输线由于电场和磁场的作用(耦合

  如图7所示的两种布局方式:3对信号横向水平布置;3对信号正交布置。每对信号周围各有两个隔离地孔。中间为受扰线,两边为干扰线为BGA扇出端,通过观察D4,D6端口对D2端口的远端串扰来分析相邻通道的串扰情况,由于两边对称,只需观察D4端口对D2端口的串扰。差分对远端串扰比较如图8所示。

  由图8所示的结果可以看到,信号正交布局时,由于孔?孔之间距离增大,孔?孔耦合减小,从端口D4到端口D2的远端串扰低于水平布局时的远端串扰。由表1可知,优化后的远端串扰比原设计在大于5 GHz频带内有5~15 dB的改善。图9从时域也验证了正交布局的优越性。优化后的设计瞬态最大峰值噪声比原设计降低了10 mV,如表1所示。

  在重要信号孔周围增加地孔隔离,能够缩短地回流路径、降低信号过孔的电感不连续性,因此可以在一定程度上改善串扰,但是很快就会饱和,S G 比1∶4与1∶3时差别已然不大,远端串扰的改善很有限。4种方案远端串扰的时域仿线所示,可以得到与频域同样的分析结果。从时域结果可得到4种方案的瞬态最大峰值噪声,S G 比1∶1时高达22 mV,1∶2时则很快降低到6 mV,1∶3和1∶4时均在1.6 mV左右,相差不到0.03 mV,如表2所示。

  由于BGA封装引脚数量有限,并不能无上限地增加地孔数量。在串扰影响和引脚数量的权衡之下,20 GHz以内S G 比1∶2与1∶3区别不大,选择1∶2即可。20 GHz以上时,S G 比1∶3要明显优于1∶2。

  在重要信号孔周围增加地孔隔离是降低串扰最简单的方法,但是很快就饱和了,而且这样很难达到一个理想的屏蔽。在封装与PCB互连区域,高速差分对之间除了孔?孔的耦合,线?孔、孔?线耦合也都是引起串扰的重要因素。此刻,除了考虑之前的三个方面影响,还应分析和研究布线层以及过孔残桩对串扰的影响。图13的情况,三个差分对分别布在不同层且具有不同过孔Stub长度,信号正交布局,每对差分过孔周围设置6个隔离地孔。图13(a)中3个差分对都布在PCB第10层,靠近底层。图13(b)中两侧的干扰线层,且将长Stub背钻59.1 mil。这样两边干扰信号与中间受扰信号之间孔?孔耦合的垂直长度显著减少。图13(c)与图13(b)恰好相反,中间的受扰线层并且背钻,两边干扰线(d)中间受扰线层,两边干扰线层且保留长Stub。

  远端串扰的频域比较如图14 所示,与方案(a)相比,方案(b)减小了两边干扰信号过孔的垂直长度,孔?孔耦合减少,而且3对差分线不在同一层,线?线之间耦合也减小了,串扰会有很大改善。由表3 可知,在5~30 GHz频带内,方案(b)比方案(a)远端串扰改善了4~12 dB。方案(c)与(b)的区别在于(c)有多余的孔线耦合,(c)中受扰线层且背钻,干扰线层,虽然孔?孔耦合也可以减小,但是两边长长的干扰信号孔会对中间差分线产生孔?线干扰。而方案(b)中,由于干扰信号孔背钻,受扰信号在经过时,并没有长Stub对差分线的干扰。由此,方案(b)的串扰是最小的。如果没有背钻,如方案(d),虽然三对信号差分线不在同一层,但长长的Stub不仅会影响阻抗的连续性,使自身差分信号产生谐振,还会增大相邻差分信号之间的串扰,甚至都不如方案(a)将信号都布置在靠近底层。

  从时域仿真结果中可以得到与频域同样的分析结果,如图15所示。由表3可知,四种方案的瞬态峰值噪声,方案(b)最小,方案(d)最大。因此,本港开奖直播现场,在今后的设计中,为避免过孔长Stub对信号的干扰,差分线应尽量靠近PCB板底层布线,多走内部带状线。几对并行的差分信号可分别布置在不同信号层以降低串扰,但要注意布在浅层的信号过孔一定要背钻。

  (1)差分信号从过孔引出时,为满足等长等距的要求,应尽量采用水平对称的布线方式,以达到最佳的传输性能和最小的共模噪声。如果布线时无法做到绝对的水平对称,45°转角布线°转角布线)BGA封装信号引脚布局采用正交方式,可充分降低差分对之间串扰的影响。与水平布局相比,正交布局在5~30 GHz频带内串扰有5~15 dB的改善。

  (4)在选择布线层时,为避免过孔长Stub对信号的干扰,差分线应尽量靠近PCB板底层布线,走内部带状线。如果很多对差分对并行传输,几对差分信号可分别布置在不同信号层以降低串扰,但要注意布在浅层的差分信号过孔一定要背钻。

  本文通过对高速BGA封装与PCB差分互连结构的优化设计,利用CST全波电磁场仿线D建模,分别研究了差分布线方式、信号布局方式、信号孔/地孔比、布线层与过孔残桩这四个方面对高速差分信号传输性能和串扰的具体影响。

  对于大多数的设计,PCB的性能要求、目标成本、制造技术和系统的复杂程度等因素存在许多相互冲突的要求,....

  近些年,由于全球EDA行业不断整合兼并,大公司频频出手收购有潜力的小公司,导致市场集中度越来越高。其中,我们最...

  实验装置:同轴电缆的一端接信号发生器,频率可变;另一端接50Ω电阻负载。同轴电缆的两端外皮(金属编织....

  学院双12特惠活动,今晚截止报名!硬件电路、BLDC、高速仿线折!还没报名参与的童鞋们,要抓紧时间啦! ...

  在多层PCB中,通常包含有信号层(S)、电源(P)平面和接地(GND)平面。电源平面和接地平面通常是....

  因为印好焊膏、没有焊接的pcb组装板无法固定热电偶的测试端,因此需要使用焊好的实际产品进行测试。

  谁都别信 如果不是你自己设计布线,一定要留出充裕的时间仔细检查布线人的设计。在这点上很小的预防抵得上一百倍的补...

  Altium Designer为啥没有TSSOP封装向导? 大佬们,你们好。我在利用封装向导创建TSSOP封装的PCB库时,...

  说明:14层板高速PCB,FPGA带两片DDR3。BGA封装电源芯片。 心得:首先根据飞线规划好模块布局,布线之前...

  铜印制线上的另外一种涂层是有机物,通常是一种防焊膜,在那些不需要焊接的地方采用丝网印制技术...

  微电子电路面临的风险比以往任何时候都大,罪魁祸首是静电放电(ESD)。静电放电是隐秘的杀手,特别容易....

  已使用 Silicon Labs 提供的参考设计完成广泛测试。建议设计者按原样使用参考设计,因为其能....

  首件是指符合贴片加工焊接质量要求的第一块PCBA加工组装板。每一个新型号的第一个批次第一块成品板在S....

  相信很多用户在查找高质量的pcb制造商和组件时都很头痛,那么到底是高质量重要,还是低成本重要。两者都....

  在单片机学习、考试,甚至在面试过程中,有各种问题等待着我们,当然,常见的问题其实也不少,今天就梳理了5个比较常见...

  全球领先的半导体解决方案供应商瑞萨电子株式会社(TSE:6723)今日宣布推出五款全新8.2mm爬电....

  ST-LINK V2 STM8/STM32下载器 烧录器 PCB BOM硬件开源资料!

  最近在学习Layout,觉得ST-LINK V2比较适合实战实践练习。所以从设计到-PCB打样到-SMT...

  业界证实,生益将于9月在华南涨价,首波对象是二线陆资PCB厂,华东区域也酝酿针对部分客户反映调高价格....

  在PCB线路板进行SMT贴片加工焊膏印刷的阶段,有很多的生产环节会应为工程工艺的管控措施没有落实到位....

  由于PCB的变形、定位不准、支撑不到位、设计等原因,印刷时模板与PCB焊盘之间很难形成理想的密封状态....

  Cadence Allegro 软件一直以来,都能够支持3D PCB 的模型制作和预览功能,但是一直....

  对于电源的回流来说,地线和铺铜相连,能让电源最大限度的找到一个最短的回流路径,从而减小电源回路面积,....

  BGA是PCB上常用的组件,通常CPU、NORTH BRIDGE、SOUTH BRIDGE、AGP ....

  常见的ESD试验等级为接触放电:1级——2KV;2级——4KV;3级——6KV;4级——8KV;空气....

  本次大赛的丰厚奖励,不仅有奖金,还有华秋打板大礼包、学习卡等,赶快来参加吧!

  本文将讨论焊膏模板与连接器共面度之间的关系,以及设计师面临的取舍和制约因素等话题。然后本文将介绍此项....

  20世纪50年代初,由于CCL的 copper foil和层压板的粘合强度和耐焊性问题得到解决,性能....

  公开资料显示,受益于全球5G布局建设、汽车电子等行业快速发展,全球专用及特殊树脂基覆铜板(主要指高频....

  Prismark数据显示2018年全球PCB产值约为623.96亿美元,同比增长6%。其中中国PCB....

  为什么要那么麻烦去学习元件级PCB电路板维修? 难道我们不是生活在“一次性”世界里,只要出现问题,就....

  LGInnotek(LG旗下负责电子设备制造的子公司)近日在上报监管文件中披露,定于12月31日关闭....

  随着PCB技术迭代和产品应用的升级,行业的“优胜劣汰”是发展的必然法则。与此同时,PCB厂商在产业转....

  对于所有模拟设计而言,接地都是一个不容忽视的问题,而在基于 PCB的电路中,适当实施接地也具有同等重....

  ROHM(总部位于日本京都)开发出一款分流电阻器“GMR50”,以5.0×2.5mm的小尺寸实现超高....


友情链接:
Copyright 2018-2021 现场报码室 版权所有,未经授权,禁止转载。